

Powered by Nature

Hybrid Generator

Teksan Hybrid Generator is a clean energy system powered by nature, which is easily configurable to meet requirements in a wide range of power.

Why Choose Teksan Hybrid Generators

Reduced Maintenance Costs

Our products continue to work up to **1000 hours** without the need for maintenance and technical service.

Affordable Investment

Investment payback period down to 2 years.

Reduction in OPEX

With the contribution of renewable energy use, generator **operating time has been reduced by 80%**. With the use of variable speed engine and fuel optimization algorithm, **65% fuel savings** are achieved.

Tailor-made Solutions

We offer different solutions to customer demand.

Remote Monitoring

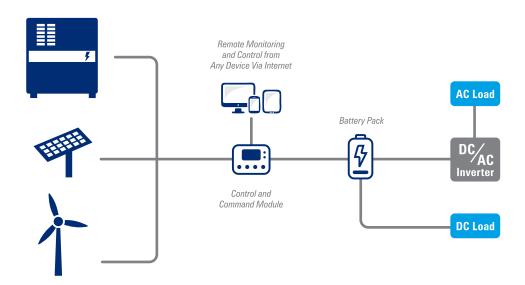
With our remote monitoring feature, the number of **site operations has been reduced.** Service support at longer intervals and minimum number of technical staff

Ultra Silent Canopy

Decreased sound level from **65 dBA @1m** is provided with custom design solutions.

UNSTABLE GRID AREAS

Field of Application


- Areas with power outages
- Locations with daily scheduled power outages up to
- Locations having short-time power outages up to 16 hours in total on a daily basis

The Objective of the Solution

- Optimum solution for lower OPEX and CAPEX
- 100% facility utilization at lower costs
- Minimizing diesel engine running time and fuel consumption
- Emergency power supply meeting up to several weeks period without refueling when there is no grid connection

How It Works

- The main power supply is the central grid.
- In case of any grid outage, the load is powered from batteries for up to 8 hours.
- If the grid outage continues for more than 8 hours, the diesel generator starts up automatically and continues to supply the load. While the generator supplies the load, it charges the storage batteries at the same time.
- When the grid power comes back, the generator stops and automatically transfers the load to the grid.
- Batteries are fully charged with the grid.
- Grid-generator changeover operates trouble-free and does not cause fluctuation.

UNSTABLE GRID AREAS						
Average Load	kW	kW 2		6		
Maximum Permanent Load	kW	3	6	10		
Battery Capacity	Ah	500	1000	1600		
Generator Power	kVA	12	26	39		
DC Power	kW	9	18	27		
Fuel Tank	lt	800	800	1000		
OPTIONAL FAST CHARGE SOLUTION						
Generator Power	kVA	26	51	77		
DC Power	kW	18	36	51		
Optional Solar Energy System Configuration						
Total Solar Power	kWp	6,4	12,8	25,6		

OFF GRID AREAS

Field of Application

- Off grid areas
- Locations where emission and fuel consumption should be minimized
- Optimized solution based on both OPEX and CAPEX for off grid areas

How It Works

The Objective of the Solution

- Providing the most suitable solution for off grid facilities
- Reducing engine running time and maintenance costs
- Lower fossil fuel consumption
- Low number of site visits due to low generator running time and fuel consumption
- The main power source is solar / wind energy (if applicable)
- If solar energy is insufficient, the batteries balance the load.
- When the batteries are discharged, the generator will start and supply the load
- The generator will stop after the batteries are charged

Average Load	kW	2	4	6		
Maximum Permanent Load	kW	3	6	10		
Battery Capacity	Ah	500	1000	1600		
Generator Power	kVA	12	26	39		
Rectifier Power	kW	9	18	27		
Fuel Tank	lt	800	800	1000		
Optional Solar Energy System Configuration						
Total Solar Power	kWp	6,4	12,8	25,6		

PURE SOLAR FOR OFF GRID AREAS

Field of Application

- Off grid sites with extremely limited access
- Low power consumption facilities

The Objective of the Solution

- Reduce operating costs
- Reduce site visit to minimum

How It Works

- The main power source is solar energy
- Batteries are charged during daylight hours
- Power is supplied from the batteries at night and on cloudy days

Average Load	kW	2	4	6
Total Solar Power	kWp	16	32	48
Floor Space	m²	80	160	240
Battery Capacity	Ah	3000	6000	9000

TECHNICAL SPECIFICATIONS

	TJ 3000 HD			TJ 6000 HD				TJ 10000 HD		
MAXIMUM LOAD	3.000 W				6.00	10.000 W				
Average Load	2.000 W					4.00	6.000 W			
Optimized Load Range		1.000 - 3	3.000 W			3.000 - 6	6.000 W		6.000 -10.000 W	
Nominal Output Voltage					48 VI	DC			•	
AC Output Power (optional)		250 - 3	000 VA			250 - 5.	.000 VA		250 - 9.000 VA	
ENGINE										
Make	Perl	kins	De	eutz	Perkins Deutz				Perkins	
Model	4031	D-11	F2M-	-2011	404[D-22	F3M-	-2011	1103A-33TG	
Output Power at 1800rpm	10,3	kW	15,0	kW	21,6	kW	23,3	kW	32,2 kW	
Cooling Type	Wa	ater	С	Dil	Wa	iter	С	Dil	Water	
Operating Speed					1300-200	00 rpm				
Fuel					Dies	el				
Standard Maintenance Interval		500 hours								
Increased Maintenance Interval (opt.)	1.000 hours									
ALTERNATOR										
Technology	Brushless Synchronous Permanent-Magnet			nt-Magnet	Brushless Synchronous Permanent-Magnet			Brushless Synchronous		
Model	TALC)40 D	PMG140	OK/18-90	TAL040 F PMG140K/18-180			TAL042 C		
Output Power at 1800rpm		91	:W		18 kW				30 kW	
DEEP CYCLE BATTERY										
Technology				Lead Ac	id/Li-lon				Li-lon	
Туре			ļ	AGM Nano Ca	arbon/LiFePO4	1			LiFeP04	
Nominal Capacity	500) Ah	500) Ah	1.000	O Ah	1.00	0 Ah	1.600 Ah	
Rated Voltage					481	V				
DoD (Depth of Discharge)				81	0%				%80	
Cycle Life (25 "C @ %80 DoD)				3.200	/ 5.000				5.000	
Maintenance Requirement					No)				
Running Temperature (°C)					-15 to 45 / -10 to 55					
SIZE										
	PERKINS DEUTZ			PERKINS		DEUTZ		PERKINS		
	LEAD CARBON	LFP	LEAD CARBON	LFP	LEAD CARBON	LFP	LEAD CARBON	LFP	LFP	
Weight	2313	1775	2348	1810	3267	2191	3307	2231	2800	
Dimensions (WxLxH)	1506x2550x2000				1506x2550x2000			1607x2800x2160		

Standard Features

DC Power Distribution		Communication Interface	RS232/ RS485
Critical loads (BLVD)	3x63A, 2x32A, 2x16A	System Operating	0°C/+45°C
Non-critical loads (LLVD)	1x63A, 2x32A, 2x16A	Remote Monitoring/Control	2G/3G/4G/Ethernet
Internal Fuel Tank	800 litres	Location Tracking	GPS

Optional Features

230V AC Output	250VA- 6.000VA	Solar Energy Kit -1 (par	ľ
Residual Current Protection	For 230V AC circuit		
Auto-Transfer Switch	Auto-Transfer Board		
Free Contacts for External Signals	8 Inputs / Outputs		
Increased Operating Temp. Range	-20°C/+55°C	Solar Energy Kit -2 (pa	I
Load Priority Selection	Critical / Non-critical		
Increased Maintenance Interval	1.000 hours	IP Protection Class	
External Fuel Tank	up to 5000 liters	Super Silent Cabinet	
External Battery Capacity	up to 2000Ah	Dust Filters	
Multiple User Support	Power measurement per user	Improved Security	

Solar Energy Kit -1 (panel, MPPT charger, fusebox)					
6,4 kWp optimized for TJ3000					
	12,8 kWp optimized for TJ6000				
	25,6 kWp optimized for TJ10000				
Solar Energy Kit -2 (pa	anel, MPPT charger, fusebox)				
	Can be optimized acc. to the project req.				
IP Protection Class	Can be optimized acc. to the project req.				
Super Silent Cabinet	Can be optimized acc. to the project req.				
Dust Filters	Can be optimized acc. to the project location				
Improved Security	Can be optimized acc. to the project location				

Additional Options on The Site

- Increased rectifier power output by adding extra modules
- Adding an external fuel tank without any modifications
- Increasing the discharge time by adding an external battery group
- Power output increase with additional hybrid generator paralleling
- Increased Solar Panel Capacity for sites with low solar radiation

	TJ 3000 HD		TJ 6000 HD			TJ 10000 HD			
EXPECTED PERFORMANCE VALUES (LOAD)	1,0 kW	2,0 kW	3,0 kW	4,0 kW	5,0 kW	6,0 kW	6,0 kW	10,0 kW	
Battery Discharge Time (hours)	16,8	8,4	5,6	8,4	6,7	5,6	9	5,4	
Battery Charge Time (hours)				4			4,4	4,8	
Battery Cycle per Day	1,16	1,94	2,51	1,94	2,25	2,51	1,79	2,36	
Expected Battery Life (years)	9,5	5,6	4,4	5,6	4,9	4,4	7	5,1	
Genset Running Hours per Day (hour)	4,6	7,7	9,9	7,7	8,9	9,9	8,6	11,4	
Engine Maintenance Period (days) (per 500h / per 1000h)	108/216	65 / 130	50/100	65 / 130	56/112	50/100	58/116	43 / 86	
Fuel Consumption per Day (liters)	10,4	20,1	29,3	38,7	47,5	56	51,2	81,9	
Fuel Transfer Period (days)	77	40	27	21	16	14	19	12	
HYBRID + SOLAR SYSTEM									
Recommended Solar Power (kWp)		6,4			12,8		25	25,6	
Number of Solar Panels (pcs)	16		32			64			
Genset Running Hours per Day (hour)	1,4	5,2	6,7	4,2	5,5	6,8	5,4	8,2	
Engine Maintenance Period (days) (per 500h / per 1000h)	357 / 714	96 / 192	74 / 148	119/238	90 / 180	73 / 146	92 / 184	60/120	
Fuel Consumption per Day (liters)	2,7	11,7	20,7	22,6	30,3	40,3	31,1	53,9	
Fuel Transfer Period (days)	296	68	38	35	26	20	32	18	
Solar Energy Rate (%)	78,9	45,3	31,9	45,3	37,9	31,8	51,1	37	
Expected Battery Life (years)	10	7,5	5,7	7,4	6,1	5,6	9,8	6,8	

REFERENCES

Some of our References in the Telecommunications Industry

Airtel KONGO Alkan Telecom **EGYPT** ■ Alsys Telecommunication ROMANIA

■ Brt Media **CYPRUS** Camusat **TANZANIA**

Helios Tower KONGO Iceland Telecom Ltd. **ICELAND** JV Coscom **UZBEKISTAN** Kazakh Telecom KAZAKHISTAN

■ Magticom Ltd. **GEORGIA**

Mts **BELARUS / UZBEKISTAN**

■ Newroz Telecom IRAQ. Orange SENEGAL / MALI / IVORY COAST

Ooredoo Telecom **ALGERIA** Saudi Telecom SAUDI ARABIA ■ Sultan Telecom **KUWAIT**

Telecel **BURKINA FASO** Turkcell TURKEY

■ Turk Telekom **TURKEY**

■ Tigo D.R. CONGO Ucell **UZBEKISTAN**

Uganda Telecom

UGANDA Ums **UZBEKISTAN**

Vodacom D.R.CONGO / TANZANIA

■ Vodafone Xpress Telecom

■ Yemen Telecom

Zain

JORDAN YEMEN **SUDAN**

THE NETHERLANDS

Hybrid Generators, which provide environmentally friendly efficient energy, are preferred in many areas thanks to their remote monitoring system.

Remote Telecom Base Stations

Oil Well-heads & Signalization Nodes

Off-shore Platforms

Remote Military Platforms

Meteorological Measurement Stations

Residential Areas without Electricity Grid Connection

Outdoor Events & Camping

SAREYOUR EVERLASTING COMPANY

